3.5.17 \(\int \frac {\cosh (c+d x)}{(a+b \sqrt {\sinh (c+d x)})^2} \, dx\) [417]

Optimal. Leaf size=49 \[ \frac {2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )}{b^2 d}+\frac {2 a}{b^2 d \left (a+b \sqrt {\sinh (c+d x)}\right )} \]

[Out]

2*ln(a+b*sinh(d*x+c)^(1/2))/b^2/d+2*a/b^2/d/(a+b*sinh(d*x+c)^(1/2))

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 49, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3302, 196, 45} \begin {gather*} \frac {2 a}{b^2 d \left (a+b \sqrt {\sinh (c+d x)}\right )}+\frac {2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )}{b^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cosh[c + d*x]/(a + b*Sqrt[Sinh[c + d*x]])^2,x]

[Out]

(2*Log[a + b*Sqrt[Sinh[c + d*x]]])/(b^2*d) + (2*a)/(b^2*d*(a + b*Sqrt[Sinh[c + d*x]]))

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 196

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(1/n - 1)*(a + b*x)^p, x], x, x^n], x] /
; FreeQ[{a, b, p}, x] && FractionQ[n] && IntegerQ[1/n]

Rule 3302

Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With
[{ff = FreeFactors[Sin[e + f*x], x]}, Dist[ff/f, Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p, x]
, x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (EqQ[n, 4] || GtQ[m, 0
] || IGtQ[p, 0] || IntegersQ[m, p])

Rubi steps

\begin {align*} \int \frac {\cosh (c+d x)}{\left (a+b \sqrt {\sinh (c+d x)}\right )^2} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (a+b \sqrt {x}\right )^2} \, dx,x,\sinh (c+d x)\right )}{d}\\ &=\frac {2 \text {Subst}\left (\int \frac {x}{(a+b x)^2} \, dx,x,\sqrt {\sinh (c+d x)}\right )}{d}\\ &=\frac {2 \text {Subst}\left (\int \left (-\frac {a}{b (a+b x)^2}+\frac {1}{b (a+b x)}\right ) \, dx,x,\sqrt {\sinh (c+d x)}\right )}{d}\\ &=\frac {2 \log \left (a+b \sqrt {\sinh (c+d x)}\right )}{b^2 d}+\frac {2 a}{b^2 d \left (a+b \sqrt {\sinh (c+d x)}\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.06, size = 42, normalized size = 0.86 \begin {gather*} \frac {2 \left (\log \left (a+b \sqrt {\sinh (c+d x)}\right )+\frac {a}{a+b \sqrt {\sinh (c+d x)}}\right )}{b^2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cosh[c + d*x]/(a + b*Sqrt[Sinh[c + d*x]])^2,x]

[Out]

(2*(Log[a + b*Sqrt[Sinh[c + d*x]]] + a/(a + b*Sqrt[Sinh[c + d*x]])))/(b^2*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(126\) vs. \(2(45)=90\).
time = 1.05, size = 127, normalized size = 2.59

method result size
derivativedivides \(\frac {\frac {2 a^{2}}{\left (-b^{2} \sinh \left (d x +c \right )+a^{2}\right ) b^{2}}+\frac {\ln \left (-b^{2} \sinh \left (d x +c \right )+a^{2}\right )}{b^{2}}+\frac {a}{b^{2} \left (a +b \left (\sqrt {\sinh }\left (d x +c \right )\right )\right )}+\frac {\ln \left (a +b \left (\sqrt {\sinh }\left (d x +c \right )\right )\right )}{b^{2}}-\frac {a}{b^{2} \left (-b \left (\sqrt {\sinh }\left (d x +c \right )\right )+a \right )}-\frac {\ln \left (-b \left (\sqrt {\sinh }\left (d x +c \right )\right )+a \right )}{b^{2}}}{d}\) \(127\)
default \(\frac {\frac {2 a^{2}}{\left (-b^{2} \sinh \left (d x +c \right )+a^{2}\right ) b^{2}}+\frac {\ln \left (-b^{2} \sinh \left (d x +c \right )+a^{2}\right )}{b^{2}}+\frac {a}{b^{2} \left (a +b \left (\sqrt {\sinh }\left (d x +c \right )\right )\right )}+\frac {\ln \left (a +b \left (\sqrt {\sinh }\left (d x +c \right )\right )\right )}{b^{2}}-\frac {a}{b^{2} \left (-b \left (\sqrt {\sinh }\left (d x +c \right )\right )+a \right )}-\frac {\ln \left (-b \left (\sqrt {\sinh }\left (d x +c \right )\right )+a \right )}{b^{2}}}{d}\) \(127\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(d*x+c)/(a+b*sinh(d*x+c)^(1/2))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(2*a^2/(-b^2*sinh(d*x+c)+a^2)/b^2+1/b^2*ln(-b^2*sinh(d*x+c)+a^2)+a/b^2/(a+b*sinh(d*x+c)^(1/2))+1/b^2*ln(a+
b*sinh(d*x+c)^(1/2))-a/b^2/(-b*sinh(d*x+c)^(1/2)+a)-1/b^2*ln(-b*sinh(d*x+c)^(1/2)+a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sinh(d*x+c)^(1/2))^2,x, algorithm="maxima")

[Out]

integrate(cosh(d*x + c)/(b*sqrt(sinh(d*x + c)) + a)^2, x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 564 vs. \(2 (45) = 90\).
time = 0.51, size = 564, normalized size = 11.51 \begin {gather*} \frac {b^{2} d x + b^{2} c - {\left (b^{2} d x + b^{2} c\right )} \cosh \left (d x + c\right )^{2} - {\left (b^{2} d x + b^{2} c\right )} \sinh \left (d x + c\right )^{2} + 2 \, {\left (a^{2} d x + a^{2} c - 2 \, a^{2}\right )} \cosh \left (d x + c\right ) + {\left (b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} - 2 \, a^{2} \cosh \left (d x + c\right ) - b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) - a^{2}\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac {b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} + 2 \, a^{2} \cosh \left (d x + c\right ) - b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) + a^{2}\right )} \sinh \left (d x + c\right ) + 4 \, {\left (a b \cosh \left (d x + c\right ) + a b \sinh \left (d x + c\right )\right )} \sqrt {\sinh \left (d x + c\right )}}{b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} - 2 \, a^{2} \cosh \left (d x + c\right ) - b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) - a^{2}\right )} \sinh \left (d x + c\right )}\right ) + {\left (b^{2} \cosh \left (d x + c\right )^{2} + b^{2} \sinh \left (d x + c\right )^{2} - 2 \, a^{2} \cosh \left (d x + c\right ) - b^{2} + 2 \, {\left (b^{2} \cosh \left (d x + c\right ) - a^{2}\right )} \sinh \left (d x + c\right )\right )} \log \left (\frac {2 \, {\left (b^{2} \sinh \left (d x + c\right ) - a^{2}\right )}}{\cosh \left (d x + c\right ) - \sinh \left (d x + c\right )}\right ) + 2 \, {\left (a^{2} d x + a^{2} c - 2 \, a^{2} - {\left (b^{2} d x + b^{2} c\right )} \cosh \left (d x + c\right )\right )} \sinh \left (d x + c\right ) + 4 \, {\left (a b \cosh \left (d x + c\right ) + a b \sinh \left (d x + c\right )\right )} \sqrt {\sinh \left (d x + c\right )}}{b^{4} d \cosh \left (d x + c\right )^{2} + b^{4} d \sinh \left (d x + c\right )^{2} - 2 \, a^{2} b^{2} d \cosh \left (d x + c\right ) - b^{4} d + 2 \, {\left (b^{4} d \cosh \left (d x + c\right ) - a^{2} b^{2} d\right )} \sinh \left (d x + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sinh(d*x+c)^(1/2))^2,x, algorithm="fricas")

[Out]

(b^2*d*x + b^2*c - (b^2*d*x + b^2*c)*cosh(d*x + c)^2 - (b^2*d*x + b^2*c)*sinh(d*x + c)^2 + 2*(a^2*d*x + a^2*c
- 2*a^2)*cosh(d*x + c) + (b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 - 2*a^2*cosh(d*x + c) - b^2 + 2*(b^2*cosh(
d*x + c) - a^2)*sinh(d*x + c))*log((b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 + 2*a^2*cosh(d*x + c) - b^2 + 2*
(b^2*cosh(d*x + c) + a^2)*sinh(d*x + c) + 4*(a*b*cosh(d*x + c) + a*b*sinh(d*x + c))*sqrt(sinh(d*x + c)))/(b^2*
cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 - 2*a^2*cosh(d*x + c) - b^2 + 2*(b^2*cosh(d*x + c) - a^2)*sinh(d*x + c))
) + (b^2*cosh(d*x + c)^2 + b^2*sinh(d*x + c)^2 - 2*a^2*cosh(d*x + c) - b^2 + 2*(b^2*cosh(d*x + c) - a^2)*sinh(
d*x + c))*log(2*(b^2*sinh(d*x + c) - a^2)/(cosh(d*x + c) - sinh(d*x + c))) + 2*(a^2*d*x + a^2*c - 2*a^2 - (b^2
*d*x + b^2*c)*cosh(d*x + c))*sinh(d*x + c) + 4*(a*b*cosh(d*x + c) + a*b*sinh(d*x + c))*sqrt(sinh(d*x + c)))/(b
^4*d*cosh(d*x + c)^2 + b^4*d*sinh(d*x + c)^2 - 2*a^2*b^2*d*cosh(d*x + c) - b^4*d + 2*(b^4*d*cosh(d*x + c) - a^
2*b^2*d)*sinh(d*x + c))

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 151 vs. \(2 (42) = 84\).
time = 4.46, size = 151, normalized size = 3.08 \begin {gather*} \begin {cases} \frac {x \cosh {\left (c \right )}}{a^{2}} & \text {for}\: b = 0 \wedge d = 0 \\\frac {\sinh {\left (c + d x \right )}}{a^{2} d} & \text {for}\: b = 0 \\\frac {x \cosh {\left (c \right )}}{\left (a + b \sqrt {\sinh {\left (c \right )}}\right )^{2}} & \text {for}\: d = 0 \\\frac {2 a \log {\left (\frac {a}{b} + \sqrt {\sinh {\left (c + d x \right )}} \right )}}{a b^{2} d + b^{3} d \sqrt {\sinh {\left (c + d x \right )}}} + \frac {2 a}{a b^{2} d + b^{3} d \sqrt {\sinh {\left (c + d x \right )}}} + \frac {2 b \log {\left (\frac {a}{b} + \sqrt {\sinh {\left (c + d x \right )}} \right )} \sqrt {\sinh {\left (c + d x \right )}}}{a b^{2} d + b^{3} d \sqrt {\sinh {\left (c + d x \right )}}} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sinh(d*x+c)**(1/2))**2,x)

[Out]

Piecewise((x*cosh(c)/a**2, Eq(b, 0) & Eq(d, 0)), (sinh(c + d*x)/(a**2*d), Eq(b, 0)), (x*cosh(c)/(a + b*sqrt(si
nh(c)))**2, Eq(d, 0)), (2*a*log(a/b + sqrt(sinh(c + d*x)))/(a*b**2*d + b**3*d*sqrt(sinh(c + d*x))) + 2*a/(a*b*
*2*d + b**3*d*sqrt(sinh(c + d*x))) + 2*b*log(a/b + sqrt(sinh(c + d*x)))*sqrt(sinh(c + d*x))/(a*b**2*d + b**3*d
*sqrt(sinh(c + d*x))), True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cosh(d*x+c)/(a+b*sinh(d*x+c)^(1/2))^2,x, algorithm="giac")

[Out]

integrate(cosh(d*x + c)/(b*sqrt(sinh(d*x + c)) + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 1.41, size = 45, normalized size = 0.92 \begin {gather*} \frac {2\,a}{b^2\,\left (a\,d+b\,d\,\sqrt {\mathrm {sinh}\left (c+d\,x\right )}\right )}+\frac {2\,\ln \left (a+b\,\sqrt {\mathrm {sinh}\left (c+d\,x\right )}\right )}{b^2\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cosh(c + d*x)/(a + b*sinh(c + d*x)^(1/2))^2,x)

[Out]

(2*a)/(b^2*(a*d + b*d*sinh(c + d*x)^(1/2))) + (2*log(a + b*sinh(c + d*x)^(1/2)))/(b^2*d)

________________________________________________________________________________________